Genetic Variants Associated with Arsenic Susceptibility: Study of Purine Nucleoside Phosphorylase, Arsenic (+3) Methyltransferase, and Glutathione S-Transferase Omega Genes
نویسندگان
چکیده
BACKGROUND Individual variability in arsenic metabolism may underlie individual susceptibility toward arsenic-induced skin lesions and skin cancer. Metabolism of arsenic proceeds through sequential reduction and oxidative methylation being mediated by the following genes: purine nucleoside phosphorylase (PNP), arsenic (+3) methyltransferase (As3MT), glutathione S-transferase omega 1 (GSTO1), and omega 2 (GSTO2). PNP functions as arsenate reductase; As3MT methylates inorganic arsenic and its metabolites; and both GSTO1 and GSTO2 reduce the metabolites. Alteration in functions of these gene products may lead to arsenic-specific disease manifestations. OBJECTIVES To find any probable association between arsenicism and the exonic single nucleotide polymorphisms (SNPs) of the above-mentioned arsenic-metabolizing genes, we screened all the exons in those genes in an arsenic-exposed population. METHODS Using polymerase chain reaction restriction fragment length polymorphism analysis, we screened the exons in 25 cases (individuals with arsenic-induced skin lesions) and 25 controls (individuals without arsenic-induced skin lesions), both groups drinking similar arsenic-contaminated water. The exonic SNPs identified were further genotyped in a total of 428 genetically unrelated individuals (229 cases and 199 controls) for association study. RESULTS Among four candidate genes, PNP, As3MT, GSTO1, and GSTO2, we found that distribution of three exonic polymorphisms, His20His, Gly51Ser, and Pro57Pro of PNP, was associated with arsenicism. Genotypes having the minor alleles were significantly overrepresented in the case group: odds ratio (OR) = 1.69 [95% confidence interval (CI), 1.08-2.66] for His20His; OR = 1.66 [95% CI, 1.04-2.64] for Gly51Ser; and OR = 1.67 [95% CI, 1.05-2.66] for Pro57Pro. CONCLUSIONS The results indicate that the three PNP variants render individuals susceptible toward developing arsenic-induced skin lesions.
منابع مشابه
Genetic variation in genes associated with arsenic metabolism: glutathione S-transferase omega 1-1 and purine nucleoside phosphorylase polymorphisms in European and indigenous Americans.
Individual variability in human arsenic metabolism has been reported frequently in the literature. This variability could be an underlying determinant of individual susceptibility to arsenic-induced disease in humans. Recent analysis revealing familial aggregation of arsenic metabolic profiles suggests that genetic factors could underlie interindividual variation in arsenic metabolism. We scree...
متن کاملGSTO and AS3MT genetic polymorphisms and differences in urinary arsenic concentrations among residents in Bangladesh.
We determined whether single nucleotide polymorphisms (SNPs) in the glutathione S-transferase omega (GSTO) and arsenic(III)methyltransferase (AS3MT) genes were associated with concentrations of urinary arsenic metabolites among 900 individuals without skin lesions in Bangladesh. Four SNPs were assessed in these genes. A pathway analysis evaluated the association between urinary arsenic metaboli...
متن کاملPurine nucleoside phosphorylase and the enzymatic antioxidant defense system in breast milk from women with different levels of arsenic exposure.
Purine nucleoside phosphorylase (PNP) is an ubiquitous enzyme which plays an important role in arsenic (As) detoxification. As is a toxic metalloid present in air, soil and water; is abundant in the environment and is readily transferred along the trophic chain, being found even in human breast milk. Milk is the main nutrient source for the growth and development of neonates. Information on bre...
متن کاملGenetic Polymorphisms Influencing Arsenic Metabolism in Human: Evidence from Vietnam
We report the association of levels of urinary arsenic (As) compounds (arsenite (AsIII), arsenate (AsV), monomethylarsonic acid (MMAV), dimethylarsinic acid (DMAV), and arsenobetaine (AB)) with genetic polymorphisms of candidate genes, glutathione S-transferase omega 1 (GSTO1) and 2 (GSTO2), mu 1 (GSTM1), and theta 1 (GSTT1), arsenic (+3 oxidation state) methyltransferase (AS3MT), methylenetetr...
متن کاملGenetic Polymorphisms Influencing Arsenic Metabolism: Evidence from Argentina
The susceptibility to arsenic-induced diseases differs greatly between individuals, possibly due to interindividual variations in As metabolism that affect retention and distribution of toxic metabolites. To elucidate the role of genetic factors in As metabolism, we studied how polymorphisms in six genes affected the urinary metabolite pattern in a group of indigenous women (n = 147) in norther...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 116 شماره
صفحات -
تاریخ انتشار 2008